Quickstart Guide
This quickstart focuses only on the core repo: https://github.com/atriva-ai/ai-inference-ov
It walks beginners through:
- Running inference locally with Python venv using built‑in models
- Running inference inside Docker using built‑in models
- Running inference with your own custom OpenVINO-ready models
It also references the test apps inside the /tests directory, since we do not yet have full example applications.
1. Local Testing (Python venv)
Prerequisites
- Python 3.10+
- OpenVINO installed (or let the repo install dependencies)
- Git
- macOS / Linux / Windows
Steps
git clone https://github.com/atriva-ai/ai-inference-ov.git
cd ai-inference-ov
python3 -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
Run the built-in test app
Inside the repo:
/tests/
test_yolov8_openvino.py
test_vehicle_trackign.py
test_api.py
Example:
python tests/test_yolov8_openvino.py
This will automatically load one of the built-in OpenVINO IR models under /models.
You should see console output showing:
- Model loaded successfully
- Inference time
- Final prediction
2. Testing Via Docker
If you prefer containerized inference:
docker build -t atriva-ai-inference .
docker run --rm atriva-ai-inference
The Docker container will:
- Install OpenVINO
- Copy the repo
- Run the same test scripts located in
/tests
To run a specific test:
docker run --rm atriva-ai-inference python tests/test_detection.py
3. Use Your Own Models
OpenVINO requires IR format:
model.xmlmodel.bin
Place your model:
/models/custom/<your_model_folder>/model.xml
/models/custom/<your_model_folder>/model.bin
Update your test script
Modify one of the test scripts to:
MODEL_PATH = "models/custom/your_model/model.xml"
Run:
python tests/test_image_classification.py